首页> 外文期刊>IEEE Transactions on Signal Processing >The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments
【24h】

The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments

机译:基于稳健协方差的MUSIC(ROC-MUSIC)算法用于脉冲噪声环境中的方位估计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new subspace-based method for bearing estimation in the presence of impulsive noise which can be modeled as a complex symmetric alpha-stable (S/spl alpha/S) process. We define the covariation matrix of the array sensor outputs and show that eigendecomposition-based methods, such as the MUSIC algorithm, can be applied to the sample covariation matrix to extract the bearing information from the measurements. A consistent estimator for the marginals of the covariation matrix is presented and its asymptotic performance is studied. The improved performance of the proposed source localization method in the presence of a wide range of impulsive noise environments is demonstrated via Monte Carlo experiments.
机译:本文提出了一种新的基于子空间的方法,用于在存在脉冲噪声的情况下进行方位估计,可以将其建模为复杂的对称α稳定(S / spl alpha / S)过程。我们定义了阵列传感器输出的协方差矩阵,并表明基于特征分解的方法(例如MUSIC算法)可以应用于样本协方差矩阵,以从测量结果中提取方位信息。提出了协方差矩阵边际的一致估计,并研究了其渐近性能。通过蒙特卡罗实验证明了所提出的源定位方法在多种脉冲噪声环境下的性能提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号