首页> 外文期刊>IEEE Transactions on Signal Processing >Parallel singular value decomposition of complex matrices using multidimensional CORDIC algorithms
【24h】

Parallel singular value decomposition of complex matrices using multidimensional CORDIC algorithms

机译:使用多维CORDIC算法对复杂矩阵进行并行奇异值分解

获取原文
获取原文并翻译 | 示例

摘要

The singular value decomposition (SVD) of complex matrices is computed in a highly parallel fashion on a square array of processors using Kogbetliantz's analog of Jacobi's eigenvalue decomposition method. To gain further speed, new algorithms for the basic SVD operations are proposed and their implementation as specialized processors is presented. The algorithms are 3-D and 4-D extensions of the CORDIC algorithm for plane rotations. When these extensions are used in concert with an additive decomposition of 2/spl times/2 complex matrices, which enhances parallelism, and with low resolution rotations early on in the SVD process, which reduce operation count, a fivefold speedup can be achieved over the fastest alternative approach.
机译:复杂矩阵的奇异值分解(SVD)使用Kogbetliantz的Jacobi特征值分解方法类似物在处理器的正方形阵列上以高度并行的方式计算。为了获得更高的速度,提出了用于基本SVD操作的新算法,并提出了它们作为专用处理器的实现。该算法是针对平面旋转的CORDIC算法的3-D和4-D扩展。当这些扩展与2 / spl次/ 2个复数矩阵的加法分解一起使用时,可以增强并行性,并且在SVD过程的早期就进行了低分辨率旋转,从而减少了操作次数,因此可以将速度提高五倍。最快的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号