首页> 外文期刊>IEEE Transactions on Signal Processing >Self-organizing feature maps and hidden Markov models for machine-tool monitoring
【24h】

Self-organizing feature maps and hidden Markov models for machine-tool monitoring

机译:自组织特征图和隐藏的马尔可夫模型,用于机床监控

获取原文
获取原文并翻译 | 示例

摘要

Vibrations produced by the use of industrial machine tools can contain valuable information about the state of wear of tool cutting edges. However, extracting this information automatically is quite difficult. It has been observed that certain structures present in the vibration patterns are correlated with dullness. We present an approach to extracting features present in these structures using self-organizing feature maps (SOFMs). We have modified the SOFM algorithm in order to improve its generalization abilities and to allow it to better serve as a preprocessor for a hidden Markov model (HMM) classifier. We also discuss the challenge of determining which classes exist in the machining application and introduce an algorithm for automatic clustering of time-sequence patterns using the HMM. We show the success of this algorithm in finding clusters that are beneficial to the machine-monitoring application.
机译:使用工业机床产生的振动会包含有关刀具切削刃磨损状态的有价值信息。但是,自动提取此信息非常困难。已经观察到,振动模式中存在的某些结构与钝度相关。我们提出了一种使用自组织特征图(SOFM)提取这些结构中存在的特征的方法。我们已经修改了SOFM算法,以提高其泛化能力,并使其能够更好地用作隐马尔可夫模型(HMM)分类器的预处理器。我们还将讨论确定加工应用程序中存在哪些类的挑战,并介绍一种使用HMM自动排序时间序列模式的算法。我们证明了该算法在寻找有利于机器监控应用程序的集群方面的成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号