首页> 外文期刊>IEEE Transactions on Signal Processing >Neural-fuzzy classification for segmentation of remotely sensed images
【24h】

Neural-fuzzy classification for segmentation of remotely sensed images

机译:神经模糊分类对遥感图像的分割

获取原文
获取原文并翻译 | 示例

摘要

An unsupervised classification technique conceptualized in terms of neural and fuzzy disciplines for the segmentation of remotely sensed images is presented. The process consists of three major steps: 1) pattern transformation; 2) neural classification; 3) fuzzy grouping. In the first step, the multispectral patterns of image pixels are transformed into what we call coarse patterns. In the second step, a delicate classification of pixels is attained by applying an ART neural classifier to the transformed pixel patterns. Since the resultant clusters of pixels are usually too keen to be of practical significance, in the third step, a fuzzy clustering algorithm is invoked to integrate pixel clusters. A function for measuring clustering validity is defined with which the optimal number of classes can be automatically determined by the clustering algorithm. The proposed technique is applied to both synthetic and real images. High classification rates have been achieved for synthetic images. We also feel comfortable with the results of the real images because their spectral variances are even smaller than the spectral variances of the synthetic images examined.
机译:提出了一种在神经和模糊学科方面概念化的无监督分类技术,用于遥感图像的分割。该过程包括三个主要步骤:1)模式转换; 2)神经分类; 3)模糊分组。第一步,将图像像素的多光谱图案转换为所谓的粗糙图案。在第二步中,通过将ART神经分类器应用于转换后的像素模式,可以实现像素的精细分类。由于所得的像素簇通常过于热衷而没有实际意义,因此在第三步中,将调用模糊聚类算法来集成像素簇。定义了一种测量聚类有效性的功能,通过该功能,聚类算法可以自动确定最佳类别数。所提出的技术被应用于合成图像和真实图像。对于合成图像,已经实现了很高的分类率。我们也对真实图像的结果感到满意,因为它们的光谱方差甚至小于所检查的合成图像的光谱方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号