首页> 外文期刊>IEEE Transactions on Signal Processing >Tracking analysis of the sign-sign algorithm for nonstationary adaptive filtering with Gaussian data
【24h】

Tracking analysis of the sign-sign algorithm for nonstationary adaptive filtering with Gaussian data

机译:高斯数据非平稳自适应滤波的正负号算法跟踪分析

获取原文
获取原文并翻译 | 示例

摘要

This correspondence is concerned with the analysis of the sign-sign algorithm (SSA) when used to track a plant with randomly time-varying parameters. The input of the plant and the plant noise are assumed stationary and Gaussian. The paper derives expressions of the steady-state excess mean square error /spl xi/, the steady-state mean square weight misalignment /spl eta/, and the step sizes that minimize each one of them. The paper also presents a comparison among the tracking properties of the SSA, the sign algorithm (SA), and the signed regressor algorithm (SRA). It is found that the three algorithms share the features that (1) /spl xi/ does not depend on the eigenvalue spread of the input covariance matrix, (2) /spl eta/ depends on the eigenvalue spread, and (3) the step size that minimizes /spl xi/ is different from the one that minimizes /spl eta/. The minimum values of /spl xi/ attained by the SA and the SRA are equal to each other, and they are 1 dB less than the one attained by the SSA. The ratio of the minimum value of /spl eta/ of the SSA to the one of the SA is found to be dependent on the input eigenvalue spread; for equal eigenvalues, this ratio is equal to 1 dB. The minimum value of /spl eta/ of the SSA is found to be 1 dB higher than the one of the SRA independently of the input eigenvalue spread. It is found that an advantage of the SSA with respect to both the SA and the SRA is that the two optimum step sizes of the SSA are independent of the mean square plant input and the mean square plant noise.
机译:当用于跟踪具有随机时变参数的植物时,此对应关系涉及对符号算法(SSA)的分析。假定植物的输入和植物噪声是平稳的和高斯的。本文推导了以下公式:稳态均方误差/ spl xi /,稳态均方差/ spl eta /以及最小化每个步长的步长。本文还提出了SSA,符号算法(SA)和符号回归算法(SRA)的跟踪属性之间的比较。发现这三种算法具有以下特征:(1)/ spl xi /不依赖于输入协方差矩阵的特征值扩展;(2)/ spl eta /不依赖于特征值扩展;以及(3)步骤最小化/ spl xi /的大小不同于最小化/ spl eta /的大小。 SA和SRA达到的/ spl xi /的最小值彼此相等,并且比SSA达到的最小值小1 dB。发现SSA的/ spleta /的最小值与SA之一的比值取决于输入特征值散布。对于相等的特征值,此比率等于1 dB。与输入特征值扩展无关,SSA的最小值/ spleta /比SRA的最小值高1 dB。已经发现,相对于SA和SRA,SSA的优点在于SSA的两个最佳步长独立于均方设备输入和均方设备噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号