首页> 外文期刊>IEEE Transactions on Signal Processing >Integer parameter estimation in linear models with applications to GPS
【24h】

Integer parameter estimation in linear models with applications to GPS

机译:线性模型中的整数参数估计及其在GPS中的应用

获取原文
获取原文并翻译 | 示例

摘要

We consider parameter estimation in linear models when some of the parameters are known to be integers. Such problems arise, for example, in positioning using carrier phase measurements in the global positioning system (GPS), where the unknown integers enter the equations as the number of carrier signal cycles between the receiver and the satellites when the carrier signal is initially phase locked. Given a linear model, we address two problems: (1) the problem of estimating the parameters and (2) the problem of verifying the parameter estimates. We show that with additive Gaussian measurement noise the maximum likelihood estimates of the parameters are given by solving an integer least-squares problem. Theoretically, this problem is very difficult computationally (NP-hard); verifying the parameter estimates (computing the probability of estimating the integer parameters correctly) requires computing the integral of a Gaussian probability density function over the Voronoi cell of a lattice. This problem is also very difficult computationally. However, by using a polynomial-time algorithm due to Lenstra, Lenstra, and Lovasz (1982), the LLL algorithm, the integer least-squares problem associated with estimating the parameters can be solved efficiently in practice; sharp upper and lower bounds can be found on the probability of correct integer parameter estimation. We conclude the paper with simulation results that are based on a synthetic GPS setup.
机译:当某些参数已知为整数时,我们考虑线性模型中的参数估计。例如,在全球定位系统(GPS)中使用载波相位测量进行定位时会出现此类问题,其中,当载波信号最初被锁相时,未知整数作为接收器和卫星之间的载波信号周期数输入方程式。给定一个线性模型,我们解决了两个问题:(1)参数估计问题;(2)验证参数估计问题。我们表明,使用加性高斯测量噪声时,通过求解整数最小二乘问题可得出参数的最大似然估计。从理论上讲,这个问题很难计算(NP-难)。验证参数估计(计算正确估计整数参数的概率)需要计算晶格的Voronoi单元上高斯概率密度函数的积分。这个问题在计算上也非常困难。然而,通过使用Lenstra,Lenstra和Lovasz(1982)提出的多项式时间算法,LLL算法可以在实践中有效地解决与估计参数有关的整数最小二乘问题。正确整数参数估计的概率可以找到明显的上限和下限。我们以基于合成GPS设置的仿真结果来结束本文。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号