首页> 外文期刊>Signal Processing, IEEE Transactions on >A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and Its Application to GNSS High Precision Positioning
【24h】

A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and Its Application to GNSS High Precision Positioning

机译:线性模型中实数和整数参数估计的贝叶斯技术及其在GNSS高精度定位中的应用

获取原文
获取原文并翻译 | 示例

摘要

A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
机译:提出了一种新颖的贝叶斯技术,用于联合估计线性测量模型中的实数和整数参数。整数参数采用有限集上的值,而实数则假定为高斯随机矢量。这些参数的后验分布是在合并新的测量值时顺序确定的。这是具有高斯连续部分和离散部分的混合分布。从此后验分布推导整数和实数参数的估计量。通过添加置信度阈值修改的最大后验(MAP)估计器用于整数部分,最小均方误差(MMSE)用于实际参数。解决了两种不同的情况:i)实数和整数参数都是时不变的; ii)整数参数是时不变的,但实数是时变的。我们的技术被应用于GNSS载波相位模糊度解决问题,这是高精度定位应用的关键。通过在考虑不同种类的测量以及不同的卫星可见性条件的不同情况下的仿真,说明了所提出技术的良好性能。与最新歧义解决算法的比较证实了性能的提高。新方法不仅在估计阶段很有用,而且可以通过适当的阈值选择来确保预定义的成功率,从而验证估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号