首页> 外文期刊>IEEE Transactions on Signal Processing >Multiple reflection attenuation in seismic data using backpropagation
【24h】

Multiple reflection attenuation in seismic data using backpropagation

机译:使用反向传播的地震数据中的多次反射衰减

获取原文
获取原文并翻译 | 示例

摘要

Multiple reflections in seismic data are generally considered to be unwanted noise that often seriously impedes correct mapping of the subsurface geology in search of oil and gas reservoirs. We train a backpropagation neural network in order to recognize and remove these multiple reflections and thereby bring out the primary reflections underneath. The training data consist of model data containing all multiples and the corresponding seismic sections containing only the primary arrivals. The basis for the modeling is data from a real well log that is typical for the area in which the data were gathered. In contrast to existing conventional deconvolution methods, the neural network does not depend on such restricting assumptions concerning the underlying model as, for example, the Wiener filter, and it has the potential to be successful in cases where other methods fail. A further advantage of the neural net approach is that it is possible to make extensive use of a priori knowledge about the geology, which is present in the form of well log data. Tests with realistic data show the ability of the neural network to extract the desired information.
机译:地震数据中的多次反射通常被认为是不必要的噪声,通常会严重阻碍地下油气藏在油气藏中的正确测绘。我们训练一个反向传播神经网络,以识别并消除这些多重反射,从而带出下面的主要反射。训练数据由包含所有倍数的模型数据和仅包含初次到达的相应地震剖面组成。建模的基础是来自真实测井的数据,该数据通常是收集数据所在区域的数据。与现有的常规反卷积方法相比,神经网络不依赖于诸如Wiener滤波器之类的有关基础模型的限制性假设,并且在其他方​​法失败的情况下具有成功的潜力。神经网络方法的另一个优点是可以广泛使用有关地质的先验知识,这些知识以测井数据的形式存在。使用实际数据进行的测试显示了神经网络提取所需信息的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号