首页> 外文期刊>IEEE Transactions on Signal Processing >Filters and filter banks for periodic signals, the Zak transform, and fast wavelet decomposition
【24h】

Filters and filter banks for periodic signals, the Zak transform, and fast wavelet decomposition

机译:用于周期信号,Zak变换和快速小波分解的滤波器和滤波器组

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach to filtering and reconstruction of periodic signals. The tool that proves to handle these tasks very efficiently is the discrete Zak transform. The discrete Zak transform can be viewed as the discrete Fourier transform performed on the signal blocks. It also can be considered the polyphase representation of periodic signals. Fast filtering-decimation-interpolation-reconstruction algorithms are developed in the Zak transform domain both for the undersampling and critical sampling cases. The technique of finding the optimal biorthogonal filter banks, i.e., those that would provide the best reconstruction even in the undersampling case, is presented. An algorithm for orthogonalization of nonorthogonal filters is developed. The condition for perfect reconstruction for the periodic signals is derived. The generalizations are made for the nonperiodic sequences, and several ways to apply the developed technique to the nonperiodic sequences are considered. Finally, the developed technique is applied to recursive filter banks and the discrete wavelet decomposition.
机译:我们提出了一种新的方法来过滤和重建周期信号。证明可以非常有效地处理这些任务的工具是离散Zak变换。离散Zak变换可以看作是对信号块执行的离散傅立叶变换。也可以将其视为周期信号的多相表示。在Zak变换域中,针对欠采样和临界采样情况,开发了快速滤波-抽取-插值-重建算法。提出了寻找最佳双正交滤波器组的技术,即即使在欠采样情况下也能提供最佳重构的滤波器组。开发了非正交滤波器正交化的算法。得出用于周期信号的完美重构的条件。对非周期序列进行了概括,并考虑了几种将开发的技术应用于非周期序列的方法。最后,将所开发的技术应用于递归滤波器组和离散小波分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号