首页> 外文期刊>IEEE Transactions on Signal Processing >Fast converging and low complexity adaptive filtering using an averaged Kalman filter
【24h】

Fast converging and low complexity adaptive filtering using an averaged Kalman filter

机译:使用平均卡尔曼滤波器的快速收敛和低复杂度自适应滤波

获取原文
获取原文并翻译 | 示例

摘要

Kalman filtering is applied to obtain a fast converging, low complexity adaptive filter that is of the matrix stepsize normalized least mean square (NLMS) type. By replacing certain variables with averages, the solution of an averaged diagonal Riccati equation allows optimal time varying adaptation gains to be precomputed or computed online with a small number of scalar Riccati equations. The adaptation gains are computed from prior assumptions on impulse response power and shape. This fact results in a systematic procedure for adaptation gain tuning in the time-varying matrix stepsize case. Simulations using music as input, show significant performance improvements as compared with the NLMS algorithm.
机译:应用卡尔曼滤波以获得矩阵形式的归一化最小均方(NLMS)类型的快速收敛,低复杂度自适应滤波器。通过用平均值代替某些变量,平均对角线Riccati方程的解决方案可以使用少量标量Riccati方程在线预先计算或在线计算最佳时变自适应增益。自适应增益是根据对脉冲响应功率和形状的先前假设计算的。这一事实导致了在时变矩阵步进情况下进行自适应增益调整的系统过程。与NLMS算法相比,使用音乐作为输入的模拟显示出显着的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号