首页> 外文期刊>IEEE Transactions on Signal Processing >Detection of random transient signals via hyperparameter estimation
【24h】

Detection of random transient signals via hyperparameter estimation

机译:通过超参数估计检测随机瞬态信号

获取原文
获取原文并翻译 | 示例

摘要

Difficulties arise with the generalized likelihood ratio test (GLRT) in situations where one or more of the unknown signal parameters requires an enumeration that is computationally intractable. In the transient signal detection problem, the frequency characteristics of the signal are typically unknown; therefore, even if an aggregate signal bandwidth is assumed, the estimation problem intrinsic to the GLRT requires an enumeration of all possible sets of signal locations within the monitored band. In this paper, a prior distribution is imposed over those portions of the signal parameter space that traditionally require enumeration. By replacing intractable enumeration over possible signal characteristics with an a priori signal distribution and by estimating the "hyperparameters" (of the prior distribution) jointly with other signal parameters, it is possible to obtain a new formulation of the GLRT that avoids enumeration and is computationally feasible. The GLRT philosophy is not changed by this approach-what is different from the original GLRT is the underlying signal model. The performance of this new approach appears to be competitive with that of a scheme of emerging acceptance: the "power-law" detector.
机译:在一个或多个未知信号参数需要计算上难以处理的枚举的情况下,广义似然比测试(GLRT)会产生困难。在瞬态信号检测问题中,信号的频率特性通常未知。因此,即使假设总的信号带宽,GLRT固有的估计问题也需要枚举所监视频带内所有可能的信号位置集。在本文中,先验分布被强加在传统上需要枚举的信号参数空间的那些部分上。通过用先验信号分布替换可能的信号特性上的棘手枚举,并通过与其他信号参数一起估计(先验分布的)“超参数”,可以得出避免枚举的新的GLRT公式,并且在计算上可行。这种方法不会改变GLRT的原理-与原始GLRT的不同之处在于底层信号模型。这种新方法的性能似乎与新兴验收方案“功率定律”检测器相比具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号