首页> 外文期刊>IEEE Transactions on Signal Processing >Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking
【24h】

Recursive expectation-maximization (EM) algorithms for time-varying parameters with applications to multiple target tracking

机译:时变参数的递归期望最大化(EM)算法及其在多目标跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

We investigate the application of expectation maximization (EM) algorithms to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, which deal with this problem, have a computational complexity that depends exponentially on the number of targets, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency and integrate these two stages. Three optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.
机译:我们调查期望最大化(EM)算法在已知数量的目标的多目标跟踪(MTT)的经典问题中的应用。处理该问题的常规算法具有计算复杂度,该计算复杂度与目标数量成指数关系,并且通常将问题分为定位阶段和跟踪阶段。新算法实现了线性依赖性,并将这两个阶段整合在一起。提出了三个优化标准,使用确定性和随机动态模型作为目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号