首页> 外文期刊>IEEE Transactions on Signal Processing >Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise
【24h】

Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise

机译:干扰占主导地位时,零强迫投影和倾斜伪逆的盲适应用于子空间检测和估计

获取原文
获取原文并翻译 | 示例

摘要

In much of modern radar, sonar, and wireless communication, it seems more reasonable to model "measurement noise" as subspace interference-plus-broadband noise than as colored noise. This observation leads naturally to a variety of detection and estimation problems in the linear statistical model. To solve these problems, one requires oblique pseudo-inverses, oblique projections, and zero-forcing orthogonal projections. The problem is that these operators depend on knowledge of signal and interference subspaces, and this information is often not at hand. More typically, the signal subspace is known, but the interference subspace is unknown. We prove a theorem that allows these operators to be estimated directly from experimental data, without knowledge of the interference subspace. As a byproduct, the theorem shows how signal subspace covariance may be estimated. When the strict identities of the theorem are approximated, then the detectors, estimators, and beamformers of this paper take on the form of adaptive subspace estimators, detectors, and Capon beamformers, all of which are reduced in rank. The fundamental operator turns out to be a certain reduced-rank Wiener filter, which we clarify in the course of our derivations. The results of this paper form a foundation for the rapid adaptation of receivers that are then used for detection and estimation. They may be applied to detection and estimation in radar, sonar, and hyperspectral imaging and to data decoding in multiuser communication receivers.
机译:在许多现代雷达,声纳和无线通信中,将“测量噪声”建模为子空间干扰加宽带噪声,而不是有色噪声,似乎更为合理。这种观察自然会导致线性统计模型中出现各种检测和估计问题。为了解决这些问题,需要倾斜的伪逆,倾斜的投影和迫零正交的投影。问题在于这些运营商依赖于信号和干扰子空间的知识,而这些信息通常不在手边。更典型地,信号子空间是已知的,但是干扰子空间是未知的。我们证明了一个定理,该定理允许直接从实验数据估计这些算子,而无需了解干扰子空间。作为副产品,该定理表明如何估计信号子空间的协方差。当近似定理的严格恒等式时,本文的检测器,估计器和波束形成器采用自适应子空间估计器,检测器和Capon波束形成器的形式,所有这些都在等级上降低。基本运算符原来是某种降阶的维纳滤波器,我们在推导过程中对此进行了澄清。本文的结果为快速适应接收器提供了基础,这些接收器随后用于检测和估计。它们可用于雷达,声纳和高光谱成像中的检测和估计,以及多用户通信接收器中的数据解码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号