首页> 外文期刊>IEEE Transactions on Signal Processing >Multitaper power spectrum estimation and thresholding: wavelet packets versus wavelets
【24h】

Multitaper power spectrum estimation and thresholding: wavelet packets versus wavelets

机译:多锥功率谱估计和阈值:小波包与小波

获取原文
获取原文并翻译 | 示例

摘要

It was suggested that spectrum estimation can be accomplished by applying wavelet denoising methodology to wavelet packet coefficients derived from the logarithm of a spectrum estimate. The particular algorithm we consider consists of computing the logarithm of the multitaper spectrum estimator, applying an orthonormal transform derived from a wavelet packet tree to the log multitaper spectrum ordinates, thresholding the empirical wavelet packet coefficients, and then inverting the transform. For a small number of tapers, suitable transforms/partitions for the logarithm of the multitaper spectrum estimator are derived using a method matched to statistical thresholding properties. The partitions thus derived starting from different stationary time series are all similar and easily derived, and any differences between the wavelet packet and discrete wavelet transform (DWT) approaches are minimal. For a larger number of tapers, where the chosen parameters satisfy the conditions of a proven theorem, the simple DWT again emerges as appropriate. Hence, using our approach to thresholding and the method of partitioning, we conclude that the DWT approach is a very adequate wavelet-based approach and that the use of wavelet packets is unnecessary.
机译:建议通过将小波去噪方法应用于从频谱估计的对数导出的小波包系数来完成频谱估计。我们考虑的特定算法包括计算多峰频谱估计量的对数,将从小波包树派生的正交变换应用于对数多峰频谱纵坐标,对经验小波包系数进行阈值化,然后将变换求逆。对于少量的锥度,使用与统计阈值属性匹配的方法来导出多峰频谱估计量对数的合适变换/分区。因此,从不同的固定时间序列开始得出的分区都是相似的,并且容易得出,并且小波包和离散小波变换(DWT)方法之间的任何差异都很小。对于大量的锥度,在所选参数满足已证明定理的条件的情况下,简单的DWT会再次出现。因此,使用我们的阈值划分方法和分区方法,我们得出结论,DWT方法是一种非常充分的基于小波的方法,并且不需要使用小波包。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号