首页> 外文期刊>IEEE Transactions on Signal Processing >Synthesis of minimum-area folded architectures for rectangular multidimensional multirate DSP systems
【24h】

Synthesis of minimum-area folded architectures for rectangular multidimensional multirate DSP systems

机译:矩形多维多速率DSP系统的最小面积折叠架构综合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we formalize a novel multirate multidimensional folding (MMF) transformation, which is a tool used to systematically synthesize control circuits for pipelined very large scale integrated (VLSI) architectures that implement a restricted but immensely practical class, namely, rectangular decimators/expandors with line-by-line scan, of multirate multidimensional algorithms. Although multirate multidimensional algorithms contain decimators and expanders that change the effective sample rate of a discrete-time signal, it is possible using MMF to time multiplex the algorithm to hardware in such a manner that the resulting synchronous architecture requires only a single-clock signal. MMF constraints are derived, and these constraints are used to address two related issues. The first issue is memory requirements in the folded architectures. We derive expressions for the minimum number of memory units required by a folded architecture that implements a multirate multidimensional algorithm. The second issue is retiming. Based on the noble identities of multirate signal processing, we derive retiming for folding constraints that indicate how a multirate multidimensional data flow graph must be retimed for a given schedule to be feasible. The techniques introduced in this paper can be used to synthesize architectures for a wide variety of DSP applications that are based on multirate multidimensional algorithms, such as signal analysis and coding based on subband decompositions and wavelet transforms. Many design examples are considered to demonstrate the viability of MMF. It is shown that MMF is able to save 18-25% area for 1-4 level two-dimensional (2-D) discrete wavelet transforms (DWTs). A tradeoff between computational and storage area is highlighted by our study of a 2064/spl times/2064 4-level 2-D DWT. We also present a few 2-D IIR filter designs, where we are able to exploit the throughput bottleneck of these filters to derive extremely low area designs.
机译:在本文中,我们将新颖的多速率多维折叠(MMF)转换形式化,该转换工具可用于系统地合成流水线超大规模集成(VLSI)架构的控制电路,该架构实现了受限但非常实用的类,即矩形抽取器/具有逐行扫描的多速率多维算法扩展器。尽管多速率多维算法包含抽取器和扩展器,这些抽取器和扩展器会更改离散时间信号的有效采样率,但仍可以使用MMF将算法以时间方式多路复用到硬件,使得最终的同步体系结构仅需要单时钟信号。得出MMF约束,并将这些约束用于解决两个相关问题。第一个问题是折叠式架构中的内存需求。我们导出了实现多速率多维算法的折叠式架构所需的最小存储单元数的表达式。第二个问题是重新计时。基于多速率信号处理的高贵身份,我们推导了折叠约束的重定时,该约束指示了对于给定的时间表可行,如何必须对多速率多维数据流图进行重新计时。本文介绍的技术可用于综合多种基于多速率多维算法的DSP应用的架构,例如基于子带分解和小波变换的信号分析和编码。考虑了许多设计实例来证明MMF的可行性。结果表明,MMF可以为1-4级二维(2-D)离散小波变换(DWT)节省18-25%的面积。我们对2064 / spl次/ 2064 4级2-D DWT的研究突显了计算和存储区域之间的折衷。我们还介绍了一些二维IIR滤波器设计,在这些设计中,我们能够利用这些滤波器的吞吐量瓶颈来得出极小的面积设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号