首页> 外文期刊>IEEE Transactions on Signal Processing >Two algorithms to segment white Gaussian data with piecewise constant variances
【24h】

Two algorithms to segment white Gaussian data with piecewise constant variances

机译:有分段恒定方差的两种分割白色高斯数据的算法

获取原文
获取原文并翻译 | 示例

摘要

Two new algorithms are presented for the segmentation of a white Gaussian-distributed time series having unknown but piecewise-constant variances. The first "sequential/minimum description length (MDL)" idea includes a rough parsing via the GLR, a penalization of segmentations having too many parts via MDL, and an optional refinement stage. The second "Gibbs sampling" approach is Bayesian and develops a Monte Carlo estimator. From simulation, it appears that both schemes are very accurate in terms of their segmentation but that the sequential/MDL approach is orders of magnitude lower in its computational needs. The Gibbs approach can, however, be useful and efficient as a final post-processing step. Both approaches (and a hybrid) are compared with several algorithms from the literature.
机译:提出了两种新算法,用于对具有未知但分段恒定的方差的白色高斯分布时间序列进行分割。第一个“顺序/最小描述长度(MDL)”想法包括通过GLR进行的粗略分析,通过MDL对包含过多部分的分段的惩罚以及可选的优化阶段。第二种“吉布斯抽样”方法是贝叶斯方法,并开发了蒙特卡洛估计器。从仿真看来,这两种方案在分割方面都非常准确,但是顺序/ MDL方法的计算需求却低了几个数量级。但是,吉布斯方法作为最终的后期处理步骤可能是有用且高效的。两种方法(以及混合方法)都与文献中的几种算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号