首页> 外文期刊>IEEE Transactions on Signal Processing >Regularized Spectral Matching for Blind Source Separation. Application to fMRI Imaging
【24h】

Regularized Spectral Matching for Blind Source Separation. Application to fMRI Imaging

机译:用于盲源分离的正则谱匹配。在fMRI成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

The main contribution of this paper is to present a Bayesian approach for solving the noisy instantaneous blind source separation problem based on second-order statistics of the time-varying spectrum. The success of the blind estimation relies on the nonstationarity of the second-order statistics and their intersource diversity. Choosing the time-frequency domain as the signal representation space and transforming the data by a short-time Fourier transform (STFT), our method presents a simple EM algorithm that can efficiently deal with the time-varying spectrum diversity of the sources. The estimation variance of the STFT is reduced by averaging across time-frequency subdomains. The algorithm is demonstrated on a standard functional resonance imaging (fMRI) experiment involving visual stimuli in a block design. Explicitly taking into account the noise in the model, the proposed algorithm has the advantage of extracting only relevant task-related components and considers the remaining components (artifacts) to be noise.
机译:本文的主要贡献是提出了一种基于时变频谱的二阶统计量的贝叶斯方法来解决噪声瞬时盲源分离问题。盲估计的成功取决于二阶统计量的不平稳性及其源间多样性。选择时频域作为信号表示空间,并通过短时傅立叶变换(STFT)对数据进行变换,我们的方法提出了一种简单的EM算法,可以有效地处理源的时变频谱多样性。通过对时频子域进行平均,可以减少STFT的估计方差。该算法在模块设计中涉及视觉刺激的标准功能共振成像(fMRI)实验中得到了证明。明确考虑模型中的噪声,该算法的优点是仅提取与任务相关的相关组件,并将其余组件(工件)视为噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号