首页> 外文期刊>IEEE Transactions on Signal Processing >Fast Algorithms for Multidimensional DCT-to-DCT Computation Between a Block and Its Associated Subblocks
【24h】

Fast Algorithms for Multidimensional DCT-to-DCT Computation Between a Block and Its Associated Subblocks

机译:块及其关联子块之间多维DCT到DCT计算的快速算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we first propose an efficient algorithm for computing one-dimensional (1-D) discrete cosine transform (DCT) for a signal block, given its two adjacent subblocks in the DCT domain and then introduce several algorithms for the fast computation of multidimensional (m-D) DCT with size N_(1) X N_(2) X ... X N_(m) given 2~(m) subblocks of DCT coefficients with size N_(1)/2 X N_(2)/2 X ... X N_(m)/2, where N_(i)(i velence 1, 2,..., m) are powers of 2. Obviously, the row-column method, which employs the most efficient algorithms along each dimension, reduces the computational complexity considerably, compared with the traditional method, which employs only the one-dimensional (1-D) fast DCT and inverse DCT (IDCT) algorithms. However, when m >= 2, the traditional method, which employs the most efficient multidimensional DCT/IDCT algorithms, has lower computational complexity than the row-column method. Besides, we propose a direct method by dividing the data into 2~(m) parts for independent fast computation, in which only two steps of r-dimensional (r velence 1, 2,..., m) IDCT and additional multiplications and additions are required. If all the dimensional sizes are the same, the number of multiplications required for the direct method is only (2~(m) - 1)/m2~(m-1) times of that required for the row-column method, and if N >= 2~(2~(m-1)), the computational efficiency of the direct method is surely superior to that of the traditional method, which employs the most efficient multidimensional DCT/IDCT algorithms.
机译:在本文中,我们首先提出一种有效的算法来计算信号块的一维(1-D)离散余弦变换(DCT),并在DCT域中给出两个相邻的子块,然后介绍几种算法来快速计算信号块给定大小为N_(1)X N_(2)X ... X N_(m)的多维(mD)DCT,具有大小为N_(1)/ 2 X N_(2)/ 2的DCT系数的2〜(m)个子块X ... X N_(m)/ 2,其中N_(i)(i velence 1,2,...,m)是2的幂。显然,行列方法采用了最有效的算法与仅使用一维(1-D)快速DCT和逆DCT(IDCT)算法的传统方法相比,每个维度都大大降低了计算复杂度。但是,当m> = 2时,采用最有效的多维DCT / IDCT算法的传统方法的计算复杂度要比行列方法低。此外,我们提出了一种直接的方法,将数据分为2〜(m)个部分进行独立的快速计算,其中只有两维的r维(旅行1、2,...,m)IDCT和附加的乘法和需要添加。如果所有尺寸都相同,则直接方法所需的乘法数仅为行列方法所需乘数的(2〜(m)-1)/ m2〜(m-1)倍,并且当N> = 2〜(2〜(m-1))时,直接方法的计算效率肯定优于采用最有效多维DCT / IDCT算法的传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号