首页> 外文期刊>IEEE Transactions on Signal Processing >Stability and Stability Margin for a Two-Dimensional System
【24h】

Stability and Stability Margin for a Two-Dimensional System

机译:二维系统的稳定性和稳定性裕度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a necessary and sufficient condition is derived for the stability of the Fornasini-Marchesini (FM) first model proposed for two-dimensional (2-D) dynamic system descriptions. A connection has been established between the stability of this model and the structured singular value (SSV) of a constant matrix, which is now widely known in control theories. Based on this connection, a novel sufficient condition is obtained for the stability of the FM first model that is more computationally convenient in filter design. Numerical simulations show that this sufficient condition is usually less conservative than that of [7]. Moreover, the stability margin of the FM first model is also investigated. It is shown that a 2-D system remains stable under parametric variations if and only if the SSV of a constant matrix is smaller than one.
机译:本文为二维(2-D)动态系统描述所提出的Fornasini-Marchesini(FM)第一模型的稳定性导出了充要条件。在该模型的稳定性和常数矩阵的结构奇异值(SSV)之间建立了联系,控制理论现已广为人知。基于此联系,为FM第一模型的稳定性获得了一个新颖的充分条件,该条件在滤波器设计中更加易于计算。数值模拟表明,这种充分条件通常不如[7]保守。此外,还研究了FM first模型的稳定性裕度。结果表明,当且仅当常数矩阵的SSV小于1时,二维系统才能在参数变化下保持稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号