首页> 外文期刊>IEEE Transactions on Signal Processing >An Algebraic Approach to the Estimation of the Order of FIR Filters From Complete and Partial Magnitude and Phase Specifications
【24h】

An Algebraic Approach to the Estimation of the Order of FIR Filters From Complete and Partial Magnitude and Phase Specifications

机译:从完整和部分幅度和相位规格估算FIR滤波器阶数的代数方法

获取原文
获取原文并翻译 | 示例

摘要

The problems addressed by this paper is the following: Given a set of measurements over the range of normalized frequencies (thetas1 ,thetas2) on the magnitude and/or phase of a real FIR but otherwise unknown filter, to estimate the order of the FIR filter. The range (thetas1,thetas2) may be partial or it may cover the entire range of frequencies. The purpose of the paper is to propose a new algebraic approach to solve the above collection of problems. Specific new results include FIR order estimation from partial or complete noiseless measurements for a real system from: a) phase alone, from b) magnitude alone (not necessarily piece-wise constant), and from c) joint magnitude and phase. The proposed approach is not only capable of dealing with specifications that go beyond the conventional formulas for the standard piece-wise-constant magnitude FIR filter order estimation, but it also furnishes a nexus for order estimation from phase (or group delay) specifications, areas which have remained hitherto unaddressed. The approach is based on the use of Root Moments. In this context, the novel concept of Fractional Root Moments is used in a key fashion to provide an estimate on the number of zeros inside the unit circle. Open problems and new directions of exploration and research are mentioned in the body of the paper
机译:本文要解决的问题如下:给定一组在真实FIR的幅度和/或相位上归一化频率(thess1,thess2)范围内的测量值,以估计FIR滤波器的阶数。范围(θ1,θ2)可以是部分范围,也可以覆盖整个频率范围。本文的目的是提出一种新的代数方法来解决上述问题。具体的新结果包括根据以下条件对真实系统进行部分或完全无噪声的测量来进行FIR阶数估算:a)仅相位,b)单独的幅度(不一定是分段常数)以及c)联合的幅度和相位。所提出的方法不仅能够处理超出常规公式的标准分段恒定幅度FIR滤波器阶次估计的规范,而且还为根据相位(或群延迟)规范,区域进行阶次估计提供了联系至今仍未解决。该方法基于根矩的使用。在这种情况下,分数根矩的新颖概念以关键方式使用,以提供单位圆内零个数的估计。本文中提到了开放的问题和新的探索和研究方向

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号