首页> 外文期刊>IEEE Transactions on Signal Processing >Joint Segmentation of Piecewise Constant Autoregressive Processes by Using a Hierarchical Model and a Bayesian Sampling Approach
【24h】

Joint Segmentation of Piecewise Constant Autoregressive Processes by Using a Hierarchical Model and a Bayesian Sampling Approach

机译:基于分层模型和贝叶斯采样方法的分段恒定自回归过程联合分割

获取原文
获取原文并翻译 | 示例

摘要

We propose a joint segmentation algorithm for piecewise constant autoregressive (AR) processes recorded by several independent sensors. The algorithm is based on a hierarchical Bayesian model. Appropriate priors allow us to introduce correlations between the change locations of the observed signals. Numerical problems inherent to Bayesian inference are solved by a Gibbs sampling strategy. The proposed joint segmentation methodology yields improved segmentation results when compared with parallel and independent individual signal segmentations. The initial algorithm is derived for piecewise constant AR processes whose orders are fixed on each segment. However, an extension to models with unknown model orders is also discussed. Theoretical results are illustrated by many simulations conducted with synthetic signals and real arc-tracking and speech signals
机译:我们为多个独立传感器记录的分段常数自回归(AR)过程提出了联合分割算法。该算法基于分层贝叶斯模型。适当的先验可让我们在观测信号的变化位置之间引入相关性。贝叶斯推断固有的数值问题通过吉布斯采样策略得以解决。与并行和独立的单个信号分割相比,提出的联合分割方法可产生更好的分割结果。初始算法是针对分段恒定的AR过程得出的,该过程的顺序在每个段上固定。但是,还讨论了模型顺序未知的模型的扩展。通过对合成信号以及真实的电弧跟踪和语音信号进行的许多模拟说明了理论结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号