首页> 外文期刊>IEEE Transactions on Signal Processing >Inference of Noisy Nonlinear Differential Equation Models for Gene Regulatory Networks Using Genetic Programming and Kalman Filtering
【24h】

Inference of Noisy Nonlinear Differential Equation Models for Gene Regulatory Networks Using Genetic Programming and Kalman Filtering

机译:基于遗传规划和卡尔曼滤波的基因调控网络噪声非线性微分方程模型的推论

获取原文
获取原文并翻译 | 示例

摘要

A key issue in genomic signal processing is the inference of gene regulatory networks. These are used both to understand the role of biological regulation in phenotypic determination and to derive therapeutic strategies for genetic-based diseases. In this paper, gene regulatory networks are inferred via evolutionary modeling based on time-series microarray measurements. A nonlinear differential equation model is adopted. It includes random noise parameters for intrinsic noise arising from stochasticity in transcription and translation and for external noise arising from factors such as the amount of RNA polymerase, levels of regulatory proteins, and the effects of mRNA and protein degradation. An iterative algorithm is proposed for model identification. Genetic programming is applied to identify the structure of the model and Kalman filtering is used to estimate the parameters in each iteration. Both standard and robust Kalman filtering are considered. The effectiveness of the proposed scheme is demonstrated by using synthetic data and by using microarray measurements pertaining to yeast protein synthesis.
机译:基因组信号处理中的一个关键问题是基因调控网络的推论。这些既可用于了解生物调节在表型确定中的作用,也可用于推导基于遗传的疾病的治疗策略。在本文中,基因调控网络是通过基于时间序列微阵列测量值的进化模型来推断的。采用非线性微分方程模型。它包括随机噪声参数,这些参数是由转录和翻译的随机性引起的固有噪声,以及由诸如RNA聚合酶的量,调节蛋白的水平以及mRNA和蛋白降解的影响等因素引起的外部噪声。提出了一种用于模型识别的迭代算法。应用遗传编程来识别模型的结构,并使用卡尔曼滤波来估计每次迭代中的参数。同时考虑了标准和鲁棒的卡尔曼滤波。通过使用合成数据和使用与酵母蛋白质合成有关的微阵列测量,证明了所提出方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号