首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >An Extended Kalman Filtering Approach to Modeling Nonlinear Dynamic Gene Regulatory Networks via Short Gene Expression Time Series
【24h】

An Extended Kalman Filtering Approach to Modeling Nonlinear Dynamic Gene Regulatory Networks via Short Gene Expression Time Series

机译:基于短基因表达时间序列的非线性动态基因调控网络建模的扩展卡尔曼滤波方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.
机译:本文采用扩展卡尔曼滤波(EKF)算法,根据基因时间序列数据对基因调控网络进行建模。基因调控网络被认为是一个非线性的动态随机模型,由基因测量方程和基因调控方程组成。在指定模型结构之后,我们应用EKF算法来识别模型参数和基因表达水平的实际值。结果表明,EKF算法是一种在线估计算法,可以使用少量观测值通过迭代过程识别大量参数(包括非线性函数的参数)。使用四个真实世界的基因表达数据集来证明EKF算法的有效性,并从生物信息学的角度评估获得的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号