首页> 外文期刊>IEEE Transactions on Signal Processing >Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery
【24h】

Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery

机译:使用分层贝叶斯模型对高光谱图像进行半监督线性光谱分解

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a hierarchical Bayesian model that can be used for semi-supervised hyperspectral image unmixing. The model assumes that the pixel reflectances result from linear combinations of pure component spectra contaminated by an additive Gaussian noise. The abundance parameters appearing in this model satisfy positivity and additivity constraints. These constraints are naturally expressed in a Bayesian context by using appropriate abundance prior distributions. The posterior distributions of the unknown model parameters are then derived. A Gibbs sampler allows one to draw samples distributed according to the posteriors of interest and to estimate the unknown abundances. An extension of the algorithm is finally studied for mixtures with unknown numbers of spectral components belonging to a know library. The performance of the different unmixing strategies is evaluated via simulations conducted on synthetic and real data.
机译:本文提出了一种可用于半监督高光谱图像分解的分层贝叶斯模型。该模型假设像素反射率是由被加性高斯噪声污染的纯组分光谱的线性组合产生的。该模型中出现的丰度参数满足正和加性约束。这些限制条件通过使用适当的先验分布在贝叶斯上下文中自然表达。然后导出未知模型参数的后验分布。吉布斯采样器允许绘制根据感兴趣的后代分布的样本并估计未知的丰度。最后,针对属于已知库的具有未知数量光谱成分的混合物研究了该算法的扩展。通过对合成数据和真实数据进行的模拟来评估不同分解策略的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号