首页> 外文期刊>IEEE Transactions on Signal Processing >Bayesian Filtering With Random Finite Set Observations
【24h】

Bayesian Filtering With Random Finite Set Observations

机译:随机有限集观测的贝叶斯滤波

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel and mathematically rigorous Bayes'' recursion for tracking a target that generates multiple measurements with state dependent sensor field of view and clutter. Our Bayesian formulation is mathematically well-founded due to our use of a consistent likelihood function derived from random finite set theory. It is established that under certain assumptions, the proposed Bayes'' recursion reduces to the cardinalized probability hypothesis density (CPHD) recursion for a single target. A particle implementation of the proposed recursion is given. Under linear Gaussian and constant sensor field of view assumptions, an exact closed-form solution to the proposed recursion is derived, and efficient implementations are given. Extensions of the closed-form recursion to accommodate mild nonlinearities are also given using linearization and unscented transforms.
机译:本文提出了一种新颖且数学上严格的贝叶斯(Bayes)递归,用于跟踪目标,该目标生成与状态相关的传感器视场和杂波的多次测量。我们的贝叶斯公式在数学上是有根据的,这是由于我们使用了从随机有限集理论中得出的一致似然函数。可以确定的是,在某些假设下,建议的贝叶斯递归减少为单个目标的基数化概率假设密度(CPHD)递归。给出了建议的递归的粒子实现。在线性高斯和恒定传感器视场假设下,得出了针对所提议的递归的精确封闭形式解决方案,并给出了有效的实现方案。还使用线性化和无味变换给出了封闭形式递归的扩展,以适应轻微的非线性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号