首页> 外文期刊>IEEE Transactions on Signal Processing >Efficient Subspace-Based Estimator for Localization of Multiple Incoherently Distributed Sources
【24h】

Efficient Subspace-Based Estimator for Localization of Multiple Incoherently Distributed Sources

机译:高效的基于子空间的估计器,用于多个非相干分布源的本地化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new subspace-based algorithm for parametric estimation of angular parameters of multiple incoherently distributed sources is proposed. This approach consists of using the subspace principle without any eigendecomposition of the covariance matrix, so that it does not require the knowledge of the effective dimension of the pseudosignal subspace, and therefore the main difficulty of the existing subspace estimators can be avoided. The proposed idea relies on the use of the property of the inverse of the covariance matrix to exploit approximately the orthogonality property between column vectors of the noise-free covariance matrix and the sample pseudonoise subspace. The resulting estimator can be considered as a generalization of the Pisarenko''s extended version of Capon''s estimator from the case of point sources to the case of incoherently distributed sources. Theoretical expressions are derived for the variance and the bias of the proposed estimator due to finite sample effect. Compared with other known methods with comparable complexity, the proposed algorithm exhibits a better estimation performance, especially for close source separation, for large angular spread and for low signal-to-noise ratio.
机译:本文提出了一种基于子空间的参数估计算法,该算法用于参数估计多个非相干分布源的角度参数。该方法包括使用子空间原理,而没有协方差矩阵的任何特征分解,因此它不需要知道伪信号子空间的有效维,因此可以避免现有子空间估计器的主要困难。所提出的想法依赖于使用协方差矩阵的逆的性质来大致利用无噪声协方差矩阵的列向量与样本伪噪声子空间之间的正交性。从点源到非相干分布源,所得的估计量可以视为Pisarenko扩展的Capon估计量的推广。对于有限样本效应,推导了所提出估计量的方差和偏差的理论表达式。与复杂度相当的其他已知方法相比,该算法具有更好的估计性能,尤其是对于近源分离,大角度扩展和低信噪比而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号