首页> 外文期刊>Signal Processing, IEEE Transactions on >Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds
【24h】

Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds

机译:使用因子分析器的非参数混合对流形进行压缩感测:算法和性能界限

获取原文
获取原文并翻译 | 示例

摘要

Nonparametric Bayesian methods are employed to constitute a mixture of low-rank Gaussians, for data ${mbi x}in{BBR}^N$ that are of high dimension $N$ but are constrained to reside in a low-dimensional subregion of ${BBR}^N$ . The number of mixture components and their rank are inferred automatically from the data. The resulting algorithm can be used for learning manifolds and for reconstructing signals from manifolds, based on compressive sensing (CS) projection measurements. The statistical CS inversion is performed analytically. We derive the required number of CS random measurements needed for successful reconstruction, based on easily-computed quantities, drawing on block-sparsity properties. The proposed methodology is validated on several synthetic and real datasets.
机译:非参数贝叶斯方法被用来构成低秩高斯函数的混合,对于{BBR} ^ N $的数据$ {mbi x}具有高维$ N $,但被约束为驻留在$$的低维子区域中{BBR} ^ N $。从数据中自动推断出混合物成分的数量及其等级。基于压缩感测(CS)投影测量结果,所得算法可用于学习流形并用于从流形中重构信号。统计CS反演是通过分析执行的。我们基于块稀疏性,基于容易计算的数量,得出成功重构所需的CS随机测量数。所提出的方法论已在多个综合和真实数据集上得到验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号