首页> 外文期刊>Signal Processing, IEEE Transactions on >Data-Aided SNR Estimation in Time-Variant Rayleigh Fading Channels
【24h】

Data-Aided SNR Estimation in Time-Variant Rayleigh Fading Channels

机译:时变瑞利衰落信道中的数据辅助SNR估计

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the data-aided (DA) signal-to-noise ratio (SNR) estimation for constant modulus modulations over time-variant flat Rayleigh fading channels. The time-variant fading channel is modeled by considering the Jakes'' model and the first order autoregressive (AR1) model. Closed-form expressions of the Cramér–Rao bound (CRB) for DA SNR estimation are derived for known and unknown fast fading Rayleigh channels parameters cases. As special cases, the CRBs over slow and uncorrelated fading Rayleigh channels are derived. Analytical approximate expressions for the CRBs are derived for low and high SNR. These expressions that enable the derivation of a number of properties that describe the bound''s dependence on key parameters such as SNR, channel correlation and sample number. Since the exact maximum likelihood (ML) estimator is computationally intensive in the case of fast-fading channels, two approximate ML estimator solutions are proposed for high and low SNR cases in the case of known channel parameters. The performances of theses estimators are examined analytically in terms of means and variances. In the presence of unknown channel parameters, a high SNR ML estimator based on the AR1 correlation model is derived. It is shown that the ML estimates of the SNR parameter and unknown channel parameters may be obtained in a separable form. Finally, simulation results illustrate the performance of the estimator and confirm the validity of the theoretical analysis.
机译:本文讨论了时变平坦瑞利衰落信道上恒定模量调制的数据辅助(DA)信噪比(SNR)估计。时变衰落信道是通过考虑Jakes模型和一阶自回归(AR1)模型来建模的。对于已知和未知的快速衰落瑞利信道参数情况,推导了用于DA SNR估计的Cramér-Rao界(CRB)的闭式表达式。作为特殊情况,得出了慢速和不相关的衰落瑞利信道上的CRB。对于低SNR和高SNR,得出了CRB的分析近似表达式。这些表达式可以推导许多属性,这些属性描述了边界对关键参数(如SNR,通道相关性和样本数)的依赖性。由于在快速衰落的信道情况下,精确的最大似然(ML)估计器需要大量计算,因此,在已知信道参数的情况下,针对高和低SNR情况,提出了两种近似ML估计器解决方案。这些评估器的性能通过均值和方差进行分析性检验。在存在未知信道参数的情况下,得出基于AR1相关模型的高SNR ML估计器。示出了可以以可分离的形式获得SNR参数和未知信道参数的ML估计。最后,仿真结果说明了估计器的性能,并证实了理论分析的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号