首页> 外文期刊>Signal Processing, IEEE Transactions on >Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise
【24h】

Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise

机译:随机噪声下估计稀疏矢量的基于相干性的性能保证

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of estimating a deterministic sparse vector $ {bf x}_{0}$ from underdetermined measurements $ {bf A} {bf x} _{0} + {bf w}$, where $ {bf w}$ represents white Gaussian noise and $ {bf A}$ is a given deterministic dictionary. We provide theoretical performance guarantees for three sparse estimation algorithms: basis pursuit denoising (BPDN), orthogonal matching pursuit (OMP), and thresholding. The performance of these techniques is quantified as the $ell _{2}$ distance between the estimate and the true value of $ {bf x}_{0}$. We demonstrate that, with high probability, the analyzed algorithms come close to the behavior of the oracle estimator, which knows the locations of the nonzero elements in $ {bf x}_{0}$. Our results are non-asymptotic and are based only on the coherence of $ {bf A}$, so that they are applicable to arbitrary dictionaries. This provides insight on the advantages and drawbacks of $ell _{1}$ relaxation techniques such as BPDN and the Dantzig selector, as opposed to greedy approaches such as OMP and thresholding.
机译:我们考虑从欠定度量$ {bf A} {bf x} _ {0} + {bf w} $来估计确定性稀疏矢量$ {bf x} _ {0} $的问题,其中$ {bf w} $表示白高斯噪声,$ {bf A} $是给定的确定性字典。我们为三种稀疏估计算法提供了理论上的性能保证:基本追踪去噪(BPDN),正交匹配追踪(OMP)和阈值化。这些技术的性能被量化为估算值与$ {bf x} _ {0} $的真实值之间的$ ell _ {2} $距离。我们证明,被分析的算法很有可能接近oracle估计器的行为,后者知道$ {bf x} _ {0} $中非零元素的位置。我们的结果是非渐近的,并且仅基于$ {bf A} $的相干性,因此它们适用于任意词典。这提供了对诸如BPDN和Dantzig选择器之类的$ ell _ {1} $松弛技术的优缺点的见解,与诸如OMP和阈值控制之类的贪婪方法相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号