首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation
【24h】

Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

机译:时滞最优OFDMA功率和子带分配的分布式随机学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, $K$ users and $N_{F}$ independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov decision problem (MDP) where the control actions are functions of the instantaneous channel state information (CSI) as well as the joint queue state information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation $Q$-factor by the sum of the per-user subband allocation $Q$-factor and derive a distributive online stochastic learning algorithm to estimate the per-user $Q$-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the multilevel water-filling structure where the CSI determines the instantaneous power allocation and the QSI determ-n-nines the water-level. The proposed algorithm has linear signaling overhead and computational complexity $ {cal O}(KN_{F})$, which is desirable from an implementation perspective.
机译:在本文中,我们考虑具有一个基站,$ K $个用户和$ N_ {F} $个独立子带的延迟最优OFDMA上行链路系统的分布式队列感知功率和子带分配设计。每个移动台都有一个上行链路队列,该队列具有异构的数据包到达和延迟要求。我们将该问题建模为无限水平平均奖励马尔可夫决策问题(MDP),其中控制动作是瞬时通道状态信息(CSI)和联合队列状态信息(QSI)的功能。为了解决分配需求以及指数内存需求和计算复杂性的问题,我们用每个用户子带分配$ Q $ -factor的总和来近似子带分配$ Q $ -factor,并得出一个分布式的在线随机学习算法同时估算每个用户的$ Q $因子和拉格朗日乘数(LM),并使用拍卖机制确定控制措施。我们表明,在提出的拍卖机制下,分布式在线学习几乎可以肯定地收敛(概率为1)。为了说明,我们将提出的分布式随机学习框架应用于具有指数分组大小分布的应用示例。我们表明,延迟最优功率控制具有多级注水结构,其中CSI决定了瞬时功率分配,而QSI确定了n级水位。所提出的算法具有线性信令开销和计算复杂度$ {cal O}(KN_ {F})$,这从实现角度来看是理想的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号