首页> 外文期刊>Signal Processing, IEEE Transactions on >QML-Based Joint Diagonalization of Positive-Definite Hermitian Matrices
【24h】

QML-Based Joint Diagonalization of Positive-Definite Hermitian Matrices

机译:基于QML的正定Hermitian矩阵的联合对角化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new algorithm for approximate joint diagonalization (AJD) of positive-definite Hermitian matrices is presented. The AJD matrix, which is assumed to be square non-unitary, is derived via minimization of a quasi-maximum likelihood (QML) objective function. This objective function coincides asymptotically with the maximum likelihood (ML) objective function, hence enabling the proposed algorithm to asymptotically approach the ML estimation performance. In the proposed method, the rows of the AJD matrix are obtained independently, in an iterative manner. This feature enables direct estimation of full row-rank rectangular AJD sub-matrices. Under some mild assumptions, convergence of the proposed algorithm is asymptotically guarantied, such that the error norm corresponding to each row of the AJD matrix reduces significantly after the first iteration, and the convergence is almost Q-super linear. This property results rapid convergence, which leads to low computational load in the proposed method. The performance of the proposed algorithm is evaluated and compared to other state-of-the-art algorithms for AJD and its practical use is demonstrated in the blind source separation and blind source extraction problems. The results imply that under the assumptions of high signal-to-noise ratio and large amount of matrices, the proposed algorithm is computationally efficient with performance similar to state-of-the-art algorithms for AJD.
机译:本文提出了一种新的正定埃尔米特矩阵近似联合对角化算法。通过最小化拟最大似然(QML)目标函数得出假定为非单位正方形的AJD矩阵。该目标函数与最大似然(ML)目标函数渐近一致,因此使所提出的算法能够渐近逼近ML估计性能。在所提出的方法中,以迭代的方式独立地获得AJD矩阵的行。此功能可直接估计完整行级矩形AJD子矩阵。在一些温和的假设下,渐近地保证了所提出算法的收敛性,使得与AJD矩阵的每一行相对应的误差范数在第一次迭代后就显着降低,并且收敛性几乎是Q超线性的。该性质导致快速收敛,从而导致所提出的方法的低计算负荷。对所提出算法的性能进行了评估,并与其他最新的AJD算法进行了比较,并证明了其在盲源分离和盲源提取问题中的实际应用。结果表明,在高信噪比和大量矩阵的假设下,该算法具有与AJD的最新算法相似的高效计算性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号