首页> 外文期刊>Signal Processing, IEEE Transactions on >Cramér-Rao Lower Bounds for Frequency andPhase NDA Estimation From Arbitrary Square QAM-Modulated Signals
【24h】

Cramér-Rao Lower Bounds for Frequency andPhase NDA Estimation From Arbitrary Square QAM-Modulated Signals

机译:任意平方QAM调制信号的频率和相位NDA估计的Cramér-Rao下界

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we derive for the first time the analytical expressions of the exact Cramér–Rao lower bounds (CRLBs) of the carrier frequency and the carrier phase from square quadrature amplitude modulated (QAM) signals, assuming the noise power and the signal amplitude to be completely unknown. The signal is assumed to be corrupted by additive white Gaussian noise (AWGN). The main contribution of this paper consists in deriving the analytical expressions for the non-data-aided (NDA) Fisher information matrix (FIM) for higher-order square QAM-modulated signals. We prove that the problem of estimating the synchronization parameters is separable from the one of estimating the signal and the noise powers by showing that the FIM is block diagonal. Besides, we show analytically that the phase CRLB is higher than the frequency CRLB, implying that it is much easier to estimate the frequency than the distortion phase. It will be seen that the CRLBs differ widely from one modulation order to another in the medium SNR range. The newly derived expressions corroborate previous attempts to numerically or empirically compute the considered CRLBs as well as their asymptotical expressions derived only in special SNR regions.
机译:在本文中,我们首次从平方正交幅度调制(QAM)信号中得出载波频率和载波相位的精确Cramér-Rao下界(CRLB)的解析表达式,并假设了噪声功率和信号幅度完全未知。假定该信号已被加性高斯白噪声(AWGN)破坏。本文的主要贡献在于推导了针对高阶方形QAM调制信号的非数据辅助(NDA)Fisher信息矩阵(FIM)的解析表达式。通过证明FIM为块对角线,我们证明了估计同步参数的问题与估计信号和噪声功率的问题是可分离的。此外,我们通过分析表明相位CRLB高于频率CRLB,这意味着估计频率要比失真相位容易得多。可以看出,在中等SNR范围内,CRLB从一种调制阶到另一种调制阶有很大差异。新推导的表达式证实了先前在数值或经验上计算考虑的CRLB以及仅在特殊SNR区域中推导的渐近表达式的尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号