首页> 外文期刊>Signal Processing, IEEE Transactions on >Coalition Formation for Bearings-Only Localization in Sensor Networks—A Cooperative Game Approach
【24h】

Coalition Formation for Bearings-Only Localization in Sensor Networks—A Cooperative Game Approach

机译:传感器网络中仅方位定位的联盟形成-一种合作博弈方法

获取原文

摘要

In this paper, formation of optimal coalitions of nodes is investigated for data acquisition in bearings-only target localization such that the average sleep time allocated to the nodes is maximized. Targets are required to be localized with a prespecified accuracy where the localization accuracy metric is defined to be the determinant of the Bayesian Fisher information matrix (B-FIM). We utilize cooperative game theory as a tool to devise a distributed dynamic coalition formation algorithm in which nodes autonomously decide which coalition to join while maximizing their feasible sleep times. Nodes in the sleep mode do not record any measurements, hence, save energy in both sensing and transmitting the sensed data. It is proved that if each node operates according to this algorithm, the average sleep time for the entire network converges to its maximum feasible value. In numerical examples, we illustrate the tradeoff between localization accuracy and the average sleep time allocated to the nodes and demonstrate the superior performance of the proposed scheme via Monte Carlo simulations.
机译:在本文中,研究了节点的最佳联盟的形成,以用于仅方位目标定位中的数据采集,从而使分配给节点的平均睡眠时间最大化。需要以预先指定的精度对目标进行定位,其中将定位精度度量标准定义为贝叶斯费舍尔信息矩阵(B-FIM)的决定因素。我们将合作博弈理论用作设计分布式动态联盟形成算法的工具,该算法中的节点自主决定加入哪个联盟,同时最大化其可行的睡眠时间。处于睡眠模式的节点不记录任何测量值,因此可以节省传感和传输传感数据的能量。事实证明,如果每个节点都按照此算法进行操作,则整个网络的平均睡眠时间将收敛到其最大可行值。在数值示例中,我们说明了定位精度与分配给节点的平均睡眠时间之间的折衷,并通过蒙特卡洛仿真证明了所提出方案的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号