首页> 外文期刊>Signal Processing, IEEE Transactions on >Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modeling Over a Unitary Dictionary
【24h】

Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modeling Over a Unitary Dictionary

机译:a字典稀疏表示模型下信号去噪的闭式MMSE估计

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the Bayesian signal denoising problem, assuming a prior based on a sparse representation modeling over a unitary dictionary. It is well known that the maximum a posteriori probability (MAP) estimator in such a case has a closed-form solution based on a simple shrinkage. The focus in this paper is on the better performing and less familiar minimum-mean-squared-error (MMSE) estimator. We show that this estimator also leads to a simple formula, in the form of a plain recursive expression for evaluating the contribution of every atom in the solution. An extension of the model to real-world signals is also offered, considering heteroscedastic nonzero entries in the representation, and allowing varying probabilities for the chosen atoms and the overall cardinality of the sparse representation. The MAP and MMSE estimators are redeveloped for this extended model, again resulting in closed-form simple algorithms. Finally, the superiority of the MMSE estimator is demonstrated both on synthetically generated signals and on real-world signals (image patches).
机译:本文假设贝叶斯信号去噪问题,假设它是基于over字典上基于稀疏表示模型的先验模型。众所周知,在这种情况下,最大后验概率(MAP)估计器具有基于简单收缩的闭合形式的解。本文的重点是性能更好且鲜为人知的最小均方误差(MMSE)估计器。我们表明,该估计量还可以得出一个简单的公式,形式为简单的递归表达式,用于评估溶液中每个原子的贡献。还考虑到表示中的异方差非零条目,并允许选择的原子和稀疏表示的整体基数具有不同的概率,从而将模型扩展到实际信号。针对此扩展模型重新开发了MAP和MMSE估计量,再次得出了封闭形式的简单算法。最后,在合成生成的信号和实际信号(图像块)上都证明了MMSE估计器的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号