首页> 外文期刊>Signal Processing, IEEE Transactions on >Methods for Sparse Signal Recovery Using Kalman Filtering With Embedded Pseudo-Measurement Norms and Quasi-Norms
【24h】

Methods for Sparse Signal Recovery Using Kalman Filtering With Embedded Pseudo-Measurement Norms and Quasi-Norms

机译:嵌入伪测量范数和拟范数的卡尔曼滤波用于稀疏信号恢复的方法

获取原文

摘要

We present two simple methods for recovering sparse signals from a series of noisy observations. The theory of compressed sensing (CS) requires solving a convex constrained minimization problem. We propose solving this optimization problem by two algorithms that rely on a Kalman filter (KF) endowed with a pseudo-measurement (PM) equation. Compared to a recently-introduced KF-CS method, which involves the implementation of an auxiliary CS optimization algorithm (e.g., the Dantzig selector), our method can be straightforwardly implemented in a stand-alone manner, as it is exclusively based on the well-known KF formulation. In our first algorithm, the PM equation constrains the l 1 norm of the estimated state. In this case, the augmented measurement equation becomes linear, so a regular KF can be used. In our second algorithm, we replace the l 1 norm by a quasi-norm lp , 0 ¿ p < 1. This modification considerably improves the accuracy of the resulting KF algorithm; however, these improved results require an extended KF (EKF) for properly computing the state statistics. A numerical study demonstrates the viability of the new methods.
机译:我们提出了两种简单的方法来从一系列嘈杂的观测中恢复稀疏信号。压缩感测(CS)理论要求解决凸约束最小化问题。我们建议通过两种算法解决这一优化问题,这两种算法都依赖于具有伪测量(PM)方程的卡尔曼滤波器(KF)。与最近引入的涉及辅助CS优化算法(例如Dantzig选择器)的KF-CS方法相比,我们的方法可以完全独立地直接实现,因为它完全基于井已知的KF配方。在我们的第一个算法中,PM方程约束估计状态的l 1范数。在这种情况下,扩充后的测量方程变为线性,因此可以使用常规KF。在我们的第二个算法中,我们用一个准范数lp,0ÂÂp <1代替l 1范数。这种修改大大提高了所得KF算法的准确性;但是,这些改进的结果需要扩展的KF(EKF)才能正确计算状态统计信息。数值研究表明了新方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号