首页> 外文期刊>Signal Processing, IEEE Transactions on >Algorithms for Dynamic Spectrum Access With Learning for Cognitive Radio
【24h】

Algorithms for Dynamic Spectrum Access With Learning for Cognitive Radio

机译:具有认知无线电学习功能的动态频谱访问算法

获取原文

摘要

We study the problem of dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). A group of cognitive users cooperatively tries to exploit vacancies in primary (licensed) channels whose occupancies follow a Markovian evolution. We first consider the scenario where the cognitive users have perfect knowledge of the distribution of the signals they receive from the primary users. For this problem, we obtain a greedy channel selection and access policy that maximizes the instantaneous reward, while satisfying a constraint on the probability of interfering with licensed transmissions. We also derive an analytical universal upper bound on the performance of the optimal policy. Through simulation, we show that our scheme achieves good performance relative to the upper bound and improved performance relative to an existing scheme. We then consider the more practical scenario where the exact distribution of the signal from the primary is unknown. We assume a parametric model for the distribution and develop an algorithm that can learn the true distribution, still guaranteeing the constraint on the interference probability. We show that this algorithm outperforms the naive design that assumes a worst case value for the parameter. We also provide a proof for the convergence of the learning algorithm.
机译:我们研究了认知无线电系统中的动态频谱感测和访问问题,将其作为部分观察到的马尔可夫决策过程(POMDP)。一组认知用户合作尝试利用其主位(许可)渠道中的职位空缺,其占用率遵循马尔可夫进化论。我们首先考虑这样一种情况,即认知用户完全了解他们从主要用户接收到的信号的分布。针对此问题,我们获得了一个贪婪的信道选择和访问策略,该策略可以最大化瞬时奖励,同时满足对许可传输干扰概率的约束。我们还得出了最优政策绩效的分析通用上限。通过仿真,我们证明了我们的方案相对于上限具有良好的性能,相对于现有方案而言,具有改进的性能。然后,我们考虑更实际的情况,即来自主信号的确切分布是未知的。我们为分布假设一个参数模型,并开发一种可以学习真实分布的算法,同时仍然保证了干扰概率的约束。我们表明,该算法优于单纯假设参数最坏情况的设计。我们还为学习算法的收敛性提供了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号