首页> 外文期刊>Signal Processing, IEEE Transactions on >Central Limit Theorems for Wavelet Packet Decompositions of Stationary Random Processes
【24h】

Central Limit Theorems for Wavelet Packet Decompositions of Stationary Random Processes

机译:平稳随机过程的小波包分解的中心极限定理

获取原文

摘要

This paper provides central limit theorems for the wavelet packet decomposition of stationary band-limited random processes. The asymptotic analysis is performed for the sequences of the wavelet packet coefficients returned at the nodes of any given path of the $M$ -band wavelet packet decomposition tree. It is shown that if the input process is strictly stationary, these sequences converge in distribution to white Gaussian processes when the resolution level increases, provided that the decomposition filters satisfy a suitable property of regularity. For any given path, the variance of the limit white Gaussian process directly relates to the value of the input process power spectral density at a specific frequency.
机译:本文为平稳带限随机过程的小波包分解提供了中心极限定理。对在$ M $频带小波包分解树的任何给定路径的节点处返回的小波包系数的序列进行渐近分析。结果表明,如果输入过程严格地保持平稳,则只要分解滤波器满足适当的规律性,当分辨率水平提高时,这些序列便会收敛于白高斯过程。对于任何给定路径,极限白色高斯过程的方差直接与特定频率下输入过程功率谱密度的值有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号