首页> 外文期刊>Signal Processing, IEEE Transactions on >Welch Method Revisited: Nonparametric Power Spectrum Estimation Via Circular Overlap
【24h】

Welch Method Revisited: Nonparametric Power Spectrum Estimation Via Circular Overlap

机译:再探Welch方法:通过圆形重叠进行非参数功率谱估计

获取原文

摘要

The objective of this paper is twofold. The first part provides further insight in the statistical properties of the Welch power spectrum estimator. A major drawback of the Welch method reported in the literature is that the variance is not a monotonic decreasing function of the fraction of overlap. Selecting the optimal fraction of overlap, which minimizes the variance, is in general difficult since it depends on the window used. We show that the explanation for the nonmonotonic behavior of the variance, as reported in the literature, does not hold. In the second part, this extra insight allows one to eliminate the nonmonotonic behavior of the variance for the Welch power spectrum estimator (PSE) by introducing a small modification to the Welch method. The main contributions of this paper are providing extra insight in the statistical properties of the Welch PSE; modifying the Welch PSE to circular overlap—the variance is a monotonically decreasing function of the fraction of overlap, making the method more user friendly; and an extra reduction of variance with respect to the Welch PSE without introducing systematic errors—this reduction in variance is significant for a small number of data records only.
机译:本文的目的是双重的。第一部分提供了对韦尔奇功率谱估计器统计特性的进一步了解。文献中报道的韦尔奇方法的主要缺点是方差不是重叠部分的单调递减函数。通常,选择最佳的重叠比例以最大程度地减少方差是困难的,因为这取决于所使用的窗口。我们表明,对文献中报道的方差的非单调行为的解释不成立。在第二部分中,这种额外的见解允许通过对Welch方法进行小的修改来消除Welch功率谱估计器(PSE)的方差的非单调行为。本文的主要贡献在于提供了对Welch PSE的统计特性的更多见解;将Welch PSE修改为圆形重叠-方差是重叠分数的单调递减函数,使该方法更加用户友好;以及相对于Welch PSE的方差的额外减少而又不引入系统错误-这种方差的减少仅对少量数据记录才有意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号