首页> 外文期刊>Signal Processing, IEEE Transactions on >A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly
【24h】

A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly

机译:线性时频变换的一般描述和快速可逆变换的制定,该变换可对冗余S变换频谱进行非冗余采样

获取原文

摘要

Examining the frequency content of signals is critical in many applications, from neuroscience to astronomy. Many techniques have been proposed to accomplish this. One of these, the S-transform, provides simultaneous time and frequency information similar to the wavelet transform, but uses sinusoidal basis functions to produce frequency and globally referenced phase measurements. It has shown promise in many medical imaging applications but has high computational requirements. This paper presents a general transform that describes Fourier-family transforms, including the Fourier, short-time Fourier, and S- transforms. A discrete, nonredundant formulation of this transform, as well as algorithms for calculating the forward and inverse transforms are also developed. These utilize efficient sampling of the time-frequency plane and have the same computational complexity as the fast Fourier transform. When configured appropriately, this new algorithm samples the continuous S-transform spectrum efficiently and nonredundantly, allowing signals to be transformed in milliseconds rather than days, as compared to the original S-transform algorithm. The new and efficient algorithms make practical many existing signal and image processing techniques, both in biomedical and other applications.
机译:从神经科学到天文学,检查信号的频率含量在许多应用中都至关重要。已经提出了许多技术来实现这一点。其中之一,即S变换,提供与小波变换类似的同时时间和频率信息,但使用正弦基函数来产生频率和全局参考的相位测量值。它在许多医学成像应用中都显示出了希望,但对计算的要求很高。本文介绍了一种描述傅立叶族变换的通用变换,包括傅立叶变换,短时傅立叶变换和S变换。还开发了此变换的离散,非冗余公式,以及用于计算正向和逆向变换的算法。它们利用时频平面的有效采样,并且具有与快速傅立叶变换相同的计算复杂性。如果配置正确,此新算法将有效且非冗余地对连续S变换频谱进行采样,与原始S变换算法相比,可以在几毫秒而不是几天的时间内对信号进行变换。新的高效算法使生物医学和其他应用中的许多现有信号和图像处理技术实用化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号