首页> 外文期刊>Signal Processing, IEEE Transactions on >Adaptive Detection of Distributed Targets in Compound-Gaussian Noise Without Secondary Data: A Bayesian Approach
【24h】

Adaptive Detection of Distributed Targets in Compound-Gaussian Noise Without Secondary Data: A Bayesian Approach

机译:在没有辅助数据的情况下自适应检测复合高斯噪声中的分布式目标:贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available. The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios.
机译:在本文中,我们处理了根据复合高斯过程对嵌入有色噪声中的分布式目标进行自适应检测的问题,并且不假设有一组辅助数据可用。被测数据的协方差矩阵具有相同的结构,同时具有不同的功率水平。在此提出了一种贝叶斯方法,其中假定结构和可能的功率水平是随机的,具有适当的分布。在此框架内,我们提出了基于GLRT的自组织检测器。提出了一些仿真研究来说明所提出算法的性能。分析表明,贝叶斯框架可能是减轻辅助数据需求的可行方法,这是异构场景中的关键问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号