首页> 外文期刊>Signal Processing, IEEE Transactions on >Radar HRRP Statistical Recognition With Local Factor Analysis by Automatic Bayesian Ying-Yang Harmony Learning
【24h】

Radar HRRP Statistical Recognition With Local Factor Analysis by Automatic Bayesian Ying-Yang Harmony Learning

机译:基于自动贝叶斯和声和声学习的局部因素分析雷达HRRP统计识别

获取原文

摘要

Radar high-resolution range profiles (HRRPs) are typical high-dimensional, non-Gaussian and interdimension dependently distributed data, the statistical modelling of which is a challenging task for HRRP based target recognition. Assuming the HRRP data follow interdimension dependent Gaussian distribution, factor analysis (FA) was recently applied to describe radar HRRPs and a two-phase procedure was used for model selection, showing promising recognition results. Besides the interdimensional dependence, this paper further models the non-Gaussianity of the radar HRRP data by local factor analysis (LFA). Moreover, since the two-phase procedure suffers from extensive computation and inaccurate evaluation on high-dimensional finite HRRPs, we adopt an automatic Bayesian Ying-Yang (BYY) harmony learning, which determines the component number and the hidden dimensionalities of LFA automatically during parameter learning. Experimental results show incremental improvements on recognition accuracy by three implementations, progressively from a two-phase FA, to a two-phase LFA, and then to an automatically learned LFA by BYY harmony learning.
机译:雷达高分辨率测距图(HRRP)是典型的高维,非高斯和维数相关的分布式数据,其统计模型对于基于HRRP的目标识别是一项艰巨的任务。假设HRRP数据遵循维数相关的高斯分布,最近应用因子分析(FA)来描述雷达HRRP,并且使用两阶段过程进行模型选择,显示出令人满意的识别结果。除了维间相关性,本文还通过局部因子分析(LFA)对雷达HRRP数据的非高斯性进行建模。此外,由于两阶段程序在高维有限HRRP上需要进行大量的计算和不准确的评估,因此我们采用了自动贝叶斯盈阳(BYY)和声学习方法,该函数可以在参数确定期间自动确定LFA的组件数和隐藏维数学习。实验结果表明,通过三种实现方式,从两阶段FA到两阶段LFA,再到通过BYY和声学习自动学习到的LFA,三种实现方式的识别准确度都得到了逐步提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号