首页> 外文期刊>Signal Processing, IEEE Transactions on >Reduced-Complexity Constrained Recursive Least-Squares Adaptive Filtering Algorithm
【24h】

Reduced-Complexity Constrained Recursive Least-Squares Adaptive Filtering Algorithm

机译:降低复杂度约束的递归最小二乘自适应滤波算法

获取原文
获取原文并翻译 | 示例

摘要

A linearly-constrained recursive least-squares adaptive filtering algorithm based on the method of weighting and the dichotomous coordinate descent (DCD) iterations is proposed. The method of weighting is employed to incorporate the linear constraints into the least-squares problem. The normal equations of the resultant unconstrained least-squares problem are then solved using the DCD iterations. The proposed algorithm has a significantly smaller computational complexity than the previously proposed constrained recursive least square (CRLS) algorithm while delivering convergence performance on par with CRLS. The effectiveness of the proposed algorithm is demonstrated by simulation examples.
机译:提出了一种基于加权和二分坐标下降(DCD)迭代方法的线性约束递推最小二乘自适应滤波算法。采用加权方法将线性约束合并到最小二乘问题中。然后,使用DCD迭代求解所得的无约束最小二乘问题的正态方程。与先前提出的约束递归最小二乘(CRLS)算法相比,所提出的算法具有显着较小的计算复杂度,同时提供了与CRLS相同的收敛性能。仿真实例证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号