首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >New Improved Recursive Least-Squares Adaptive-Filtering Algorithms
【24h】

New Improved Recursive Least-Squares Adaptive-Filtering Algorithms

机译:新的改进的递归最小二乘自适应滤波算法

获取原文
获取原文并翻译 | 示例

摘要

Two new improved recursive least-squares adaptive-filtering algorithms, one with a variable forgetting factor and the other with a variable convergence factor are proposed. Optimal forgetting and convergence factors are obtained by minimizing the mean square of the noise-free a posteriori error signal. The determination of the optimal forgetting and convergence factors requires information about the noise-free a priori error which is obtained by solving a known $L_1-L_2$ minimization problem. Simulation results in system-identification and channel-equalization applications are presented which demonstrate that improved steady-state misalignment, tracking capability, and readaptation can be achieved relative to those in some state-of-the-art competing algorithms.
机译:提出了两种新的改进的递归最小二乘自适应滤波算法,一种具有遗忘因子可变,另一种具有收敛因子可变的算法。通过最小化无噪声后验误差信号的均方值,可以获得最佳的遗忘和收敛因子。确定最佳遗忘因子和收敛因子需要有关无噪声先验误差的信息,该信息可通过求解已知的<公式Formulatype =“ inline”> $ L_1-L_2 $ 最小化问题。给出了系统识别和通道均衡应用中的仿真结果,这些仿真结果表明,与某些最新竞争算法相比,可以实现更高的稳态失准,跟踪能力和重新适配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号