首页> 外文期刊>Signal Processing, IEEE Transactions on >Structure-Based Bayesian Sparse Reconstruction
【24h】

Structure-Based Bayesian Sparse Reconstruction

机译:基于结构的贝叶斯稀疏重构

获取原文
获取原文并翻译 | 示例

摘要

Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity.
机译:稀疏信号重建算法由于其在各个领域的广泛应用而引起了研究关注。在本文中,我们提出了一种简单的贝叶斯方法,该方法利用稀疏性约束和先验统计信息(高斯或其他方法)来获得接近最佳的估计。此外,我们利用在许多信号处理应用程序中遇到的传感矩阵的丰富结构,来开发一种快速的稀疏恢复算法。与广泛使用的凸松弛方法和贪婪匹配追踪技术相比,所提出算法的计算复杂度非常低,尤其是在稀疏性较高的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号