首页> 外文期刊>Signal processing >Adaptive Cluster Structured Sparse Bayesian Learning with Application to Compressive Reconstruction for Chirp Signals
【24h】

Adaptive Cluster Structured Sparse Bayesian Learning with Application to Compressive Reconstruction for Chirp Signals

机译:自适应集群结构稀疏贝叶斯学习,应用于Chirp信号的压缩重建

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) is a promising framework to achieve efficient sampling for wide-band chirp signals due to its significance in reducing the sampling rate and power consumption. Under the CS theory, this paper studies the compressive reconstruction problem for chirp signals whose sparse matrix shows unknown cluster structures. To investigate the structure information to improve the reconstruction performance, existing methods require the prior knowledge on the cluster structure and suffer from the model mismatch problem. In this paper, an adaptive cluster structured sparse Bayesian learning algorithm is proposed to alleviate the requirements on the prior knowledge by exploiting and incorporating the local structure of the sparse matrix into the reconstruction model. To avoid the model mismatch problem, we apply an adaptive mechanism in variable estimation so that the reconstruction for one coefficient can selectively use the statistical information of its neighbors. The proposed algorithm is verified on both the simulated and the real chirp datasets. Numerical experimental results show that the proposed algorithm outperforms other state-of-art reconstruction algorithms in both noiseless and noisy environments. The proposed method is also found to further reduce the total sampling rate of the compressive sampling system.
机译:压缩检测(CS)是一个有前途的框架,以实现宽带啁啾信号的有效采样,因为它在降低采样率和功耗方面的意义。在CS理论下,本文研究了稀疏矩阵显示未知群集结构的啁啾信号的压缩重建问题。为了调查结构信息,提高重建性能,现有方法需要对集群结构的先验知识并遭受模型不匹配问题。在本文中,提出了一种结构化稀疏贝叶斯学习算法,通过利用和将稀疏矩阵的局部结构进行了解和结合到重建模型来缓解先前知识的要求。为了避免模型不匹配问题,我们在可变估计中应用自适应机制,使得一个系数的重建可以选择性地使用其邻居的统计信息。在模拟和真实的Chirp数据集中验证了所提出的算法。数值实验结果表明,该算法在无噪声和嘈杂的环境中优于其他最先进的重建算法。还发现该方法进一步降低了压缩采样系统的总采样率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号