首页> 外文期刊>Signal Processing, IEEE Transactions on >Shrinkage-to-Tapering Estimation of Large Covariance Matrices
【24h】

Shrinkage-to-Tapering Estimation of Large Covariance Matrices

机译:大协方差矩阵的收缩率到锥度估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a shrinkage-to-tapering approach for estimating large covariance matrices when the number of samples is substantially fewer than the number of variables (i.e., $n,prightarrowinfty$ and ${pover n}rightarrowinfty$). The proposed estimator improves upon both shrinkage and tapering estimators by shrinking the sample covariance matrix to its tapered version. We first show that, under both normalized Frobenius and spectral risks, the minimum mean-squared error (MMSE) shrinkage-to-identity estimator is inconsistent and outperformed by a minimax tapering estimator for a class of high-dimensional and diagonally dominant covariance matrices. Motivated by this observation, we propose a shrinkage-to-tapering oracle (STO) estimator for efficient estimation of general, large covariance matrices. A closed-form formula of the optimal coefficient $rho$ of the proposed STO estimator is derived under the minimum Frobenius risk. Since the true covariance matrix is to be estimated, we further propose a STO approximating (STOA) algorithm with a data-driven bandwidth selection procedure to iteratively estimate the coefficient $rho$ and the covariance matrix. We study the finite sample performances of different estimators and our simulation results clearly show the improved performances of the proposed STO estimators. Finally, the proposed STOA method is applied to a real breast cancer gene expression data set.
机译:在本文中,当样本数量明显少于变量数量(即$ n,prightarrowinfty $和$ {pover n} rightarrowinfty $)时,我们引入了一种从收缩到渐缩的方法来估计大协方差矩阵。拟议的估算器通过将样本协方差矩阵收缩到其渐缩形式来改进收缩估算器和渐缩估算器。我们首先显示,在归一化的Frobenius和频谱风险下,最小均方误差(MMSE)的收缩至同一性估计量与一类高维和对角占主导地位的协方差矩阵的minimax锥形估计量不一致,并且表现不佳。受此观察结果的启发,我们提出了一种收缩到渐减的预言值(STO)估计器,用于有效地估计一般的大协方差矩阵。在最小Frobenius风险下,得出了建议的STO估计器的最佳系数$ rho $的封闭形式公式。由于要估计真实的协方差矩阵,因此我们进一步提出了一种STO近似(STOA)算法,该算法具有数据驱动的带宽选择过程,可以迭代地估算系数$ rho $和协方差矩阵。我们研究了不同估计量的有限样本性能,我们的仿真结果清楚地表明了所提出的STO估计量的改进性能。最后,将所提出的STOA方法应用于真实的乳腺癌基因表达数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号