首页> 外文期刊>Signal Processing, IEEE Transactions on >Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization
【24h】

Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization

机译:具有异常稀疏正则化的双线性分解的稳健PCA

获取原文
获取原文并翻译 | 示例

摘要

Principal component analysis (PCA) is widely used for dimensionality reduction, with well-documented merits in various applications involving high-dimensional data, including computer vision, preference measurement, and bioinformatics. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify PCA against outliers. A least-trimmed squares estimator of a low-rank bilinear factor analysis model is shown closely related to that obtained from an $ell_{0}$ -(pseudo)norm-regularized criterion encouraging sparsity in a matrix explicitly modeling the outliers. This connection suggests robust PCA schemes based on convex relaxation, which lead naturally to a family of robust estimators encompassing Huber's optimal M-class as a special case. Outliers are identified by tuning a regularization parameter, which amounts to controlling sparsity of the outlier matrix along the whole robustification path of (group) least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its ties to robust statistics, the developed outlier-aware PCA framework is versatile to accommodate novel and scalable algorithms to: i) track the low-rank signal subspace robustly, as new data are acquired in real time; and ii) determine principal components robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests corroborate the effectiveness of the proposed robust PCA schemes, when used to identify aberrant responses in personality assessment surveys, as well as unveil communities in social networks, and intruders from video surveillance data.
机译:主成分分析(PCA)被广泛用于降维,在涉及高维数据(包括计算机视觉,偏好测量和生物信息学)的各种应用中,有据可查的优点。在这种情况下,这里提倡的新鲜外观渗透了变量选择和压缩采样的好处,从而可以使PCA免受异常影响。显示了低秩双线性因子分析模型的最小整理平方估计量,它与从鼓励简化稀疏模型的矩阵中的稀疏性的$ ell_ {0} $-(伪)范数正则化准则获得的结果密切相关。这种联系暗示了基于凸松弛的鲁棒PCA方案,这自然导致了一系列鲁棒估计量,其中包括Huber的最优M类作为特例。通过调整正则化参数来识别离群值,该参数等于沿着(组)最小绝对收缩和选择算子(Lasso)解的整个鲁棒化路径控制离群矩阵的稀疏性。除了与稳健统计的联系之外,已开发的异常值感知PCA框架还具有多种功能,可以容纳新颖且可扩展的算法,以便:i)在实时获取新数据时,稳健地跟踪低秩信号子空间; ii)在(可能)无限维特征空间中稳健地确定主成分。综合和真实数据测试证实了所提出的鲁棒PCA方案的有效性,该方案用于识别人格评估调查中的异常响应,以及揭露社交网络中的社区以及来自视频监视数据的入侵者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号