首页> 外文期刊>Signal Processing, IEEE Transactions on >Decentralized Resource Assignment in Cognitive Networks Based on Swarming Mechanisms Over Random Graphs
【24h】

Decentralized Resource Assignment in Cognitive Networks Based on Swarming Mechanisms Over Random Graphs

机译:基于随机图上群机制的认知网络分散资源分配

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a distributed resource assignment strategy for cognitive networks mimicking a swarm foraging mechanism, assuming that the communication among the cognitive nodes is impaired by random link failures and quantization noise. Using results from stochastic approximation theory, we propose a swarm mechanism that converges almost surely to a final allocation even in the presence of imperfect communication scenarios. The theoretical findings are corroborated by numerical results showing that the only effect of the random link failures is to decrease the convergence rate of the algorithm. We propose then a fast swarming approach, robust to random disturbances, that adapts its behavior with respect to the interference power perceived by every node, thus increasing the speed of convergence and improving the resource allocation capabilities.
机译:假设认知节点之间的通信受到随机链接故障和量化噪声的损害,本文提出了一种模仿群体搜寻机制的认知网络分布式资源分配策略。利用随机逼近理论的结果,我们提出了一种即使在通信环境不完善的情况下,也几乎可以肯定地收敛到最终分配的群体机制。数值结果证实了理论上的发现,数值结果表明随机链路故障的唯一影响是降低了算法的收敛速度。然后,我们提出了一种对随机干扰具有鲁棒性的快速群集方法,该方法针对每个节点感知的干扰功率调整其行为,从而提高收敛速度并提高资源分配能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号