首页> 外文期刊>Signal Processing, IEEE Transactions on >Joint Blind Source Separation With Multivariate Gaussian Model: Algorithms and Performance Analysis
【24h】

Joint Blind Source Separation With Multivariate Gaussian Model: Algorithms and Performance Analysis

机译:多元高斯模型联合盲源分离:算法与性能分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the joint blind source separation (JBSS) problem and introduce a number of algorithms to solve the JBSS problem using the independent vector analysis (IVA) framework. Source separation of multiple datasets simultaneously is possible when the sources within each and every dataset are independent of one another and each source is dependent on at most one source within each of the other datasets. In addition to source separation, the IVA framework solves an essential problem of JBSS, namely the identification of the dependent sources across the datasets. We propose to use the multivariate Gaussian source prior to achieve JBSS of sources that are linearly dependent across datasets. Analysis within the paper yields the local stability conditions, nonidentifiability conditions, and induced Cramér-Rao lower bound on the achievable interference to source ratio for IVA with multivariate Gaussian source priors. Additionally, by exploiting a novel nonorthogonal decoupling of the IVA cost function we introduce both Newton and quasi-Newton optimization algorithms for the general IVA framework.
机译:在本文中,我们考虑了联合盲源分离(JBSS)问题,并介绍了使用独立矢量分析(IVA)框架解决JBSS问题的多种算法。当每个数据集内的源彼此独立并且每个源都依赖于其他每个数据集中的一个源时,可以同时进行多个数据集的源分离。除了源分离之外,IVA框架还解决了JBSS的一个基本问题,即跨数据集识别相关源。我们建议在实现跨数据集线性相关的源的JBSS之前,先使用多元高斯源。本文中的分析产生了局部稳定条件,不可识别条件,以及在具有多变量高斯源先验条件的IVA中可达到的干扰源比上的Cramér-Rao下界。此外,通过利用IVA成本函数的一种新颖的非正交解耦,我们为一般的IVA框架引入了牛顿优化算法和准牛顿优化算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号