首页> 外文期刊>Signal Processing, IEEE Transactions on >On Algorithms and Complexities of Cyclotomic Fast Fourier Transforms Over Arbitrary Finite Fields
【24h】

On Algorithms and Complexities of Cyclotomic Fast Fourier Transforms Over Arbitrary Finite Fields

机译:有限域上环快速傅立叶变换的算法和复杂性

获取原文
获取原文并翻译 | 示例

摘要

Discrete Fourier transforms over finite fields are significant due to their widespread applications in cryptography and error control codes, which in turn are used in all digital communication and storage systems. Cyclotomic fast Fourier transforms (CFFTs) are of great interest due to their low multiplicative complexities. However, all existing CFFTs are for characteristic-2 fields, and the computational complexities of CFFTs have not been analyzed theoretically. This paper addresses both problems for CFFTs, and has three main contributions to this end. First, we propose an efficient bilinear algorithm to compute Toeplitz matrix vector products (TMVPs), which has a lower computational complexity than existing algorithms, and works on all finite fields as well as the real and complex fields. Second, we propose an efficient algorithm for cyclic convolutions over arbitrary finite fields, which is essential in deriving efficient CFFTs over arbitrary finite fields. Finally, we derive bounds on the additive and multiplicative complexities of CFFTs over arbitrary finite fields. Our results confirm that CFFTs have the smallest multiplicative complexities among all known algorithms. Although their high additive complexities render them asymptotically suboptimal, CFFTs remain valuable since they have the smallest overall complexities for DFTs of up to thousands of symbols in most cases.
机译:有限域上的离散傅立叶变换非常重要,这是因为它们在密码术和错误控制代码中的广泛应用,进而又在所有数字通信和存储系统中使用。环原子快速傅立叶变换(CFFT)由于其低乘法复杂性而备受关注。然而,所有现有的CFFT都用于特征2场,并且CFFT的计算复杂性尚未在理论上进行分析。本文解决了CFFT的两个问题,并为此做出了三个主要贡献。首先,我们提出了一种高效的双线性算法来计算Toeplitz矩阵矢量积(TMVP),该算法的计算复杂度比现有算法低,并且适用于所有有限域以及实数域和复数域。其次,我们提出了一种用于在任意有限域上进行循环卷积的有效算法,这对于推导在任意有限域上的有效CFFT至关重要。最后,我们推导了任意有限域上CFFT的加法和乘法复杂度的界限。我们的结果证实,在所有已知算法中,CFFT具有最小的乘法复杂度。尽管CFFT的高累加复杂度使其渐近渐近于次优,但CFFT仍然有价值,因为在大多数情况下,对于具有多达数千个符号的DFT,它们具有最小的总体复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号